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Abstract

For advanced digital space transponders, the Digital I)hasec{-Locked  Loops (IIPLLs)  can be

designed using the available analog loops. DP1 .1..s considered in this paper are derived from the Ana-

log Pl~ase-Locked  Loop (APLL) using S-domain to Z-domain mapping techniques. Three mappings

are used to develop digital approximations of the APLL, namely, Bilinear Transformation (B1’),.

Impulse Invariant Transformation (IIT) and Step Invariant Transformation (S11) techniques. Nun~eri-

cal results using typical parameters employed by NASA’s standard transponder are presented as an

example. The performance in terms of the closed loop phase and magnitude responses, carrier track-

ing jitter, and response of the loop to the phase offset (between the incoming phase and reference

phase) are evaluated for each digital approximation. theoretical results of the carrier tracking jitter

for signal with data modulation-on and signal with data modulation-off cases are then validated by

computer simul ati on. Both ‘theoretical and computer simulation results show that at high sampling

frequency, the DPLL approximated by all three transformations have the same tracking jitter. How-

ever at low sampling frequency, the digital approximation using F3T outperforms the others. Minimum

sampling frequency for adequate tracking performance is determined for each digital approximation

of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides

faster response to the phase offset than IIT and SIT.



1. introduction

Migration towards a full digital-implementation of thespace  transponders is currently one of the

main objectives in satellite/spacecraft transponders design. The use of DPLL is increasingly becom-

ing popular for both satellite and spacecraft transponder applications. In recent years, the topic of

DPLL has been studied in great detail and well documented in the literature [1 - 11]. Reference [ 1 ] pro-

vided excellent survey of the work accomplished during 1960- 19S0. References [4-6] dealt with the

,analysis,  design and performance of the DPLL. References [7-8] discussed optimum DPLL and digital

approximation of the analog loop filter. References [1 0-11 ] presented various algorithms for imple-

menting tf~e DPLL. Currently, most of the work on KIPLL concentrates in these areas, and very little

on the optimum digital approximation of the API.L [8-9]. Reference [8] dealt  only with the design of

an optimum loop filter using IIT, minimization method, estimation-prediction technique, and classical

control theory approach. The digital loop filters derived by these methods were compared in [8] in

terms of stability, gain margin, steady state and transient performance. On the other hand, [9] focused

on the design of the DPI.I.. based on the AP1.L. Reference [9] considered four different transforn}a-

tions,  namely, Bilinear Transformation (BT), Impulse Invariant Transformation (IIT), Step Invariant

Transformation (SIT) and Rotational Transformation (1{3’). l’he output phase responses of the approx-

imated digital loops using these transformations, for low sampling rates, were evaluated in the absence

of noise and c“ompared.  It was found in [9] that for a simple second order APLL, the phase response of

the digital approximation of the API J. using I IT method exhibits less overshoot and ringing than the

others.

The present work is an extension of [8, 9 and 14] to include many other aspects in determining an

optimum transformation techl;ique  to develop a gooci digital a~proximation  of a given APLL. The

digital approximation is developed by mapping the continuous time S-domain to the discrete time Z-

domain. The mapping is accomplished usir~g BT, IIT, SIT, and RT. Because the RT is identical to IIT

technique, only three techniques, namely, lIT, IIT and SIT are considered in this paper. For each of

these mapping techniques, the phase and magnitude responses of the closed-loop transfer function, the

response of the loop to the phase offset, the minimum sampling frequency for adequate tracking per-

formance; and the carrier tracking jitter will be eva]uated.

The paper is divided into 5 sections. Section 2 introduces the typical earfh-to-space (or the uplink)



signal format to be received by the analog space transponder along with a simplified model of the typ-

ical APLL for tracking the uplink  carrier. Note that the uplink  signal  can have either command data

modulation on or off. Equivalent DP1.L’s are also described in this section. Detailed recursive inlple-

mcntations of the DPLL’s using BT, IIT and SIT are described in Section 3. Included in Section 3 are

the plots of the phase and magnitude responses of the closed-loop transfer functions for each digital

approximation of the APLL using the NASA’s standard transponder as an example. Section 4 derives

the carrier tracking phase jitter for both analog  and digital loops with the command modulation-on

and command modulation-off. Section 5 presents the computer simulation results to verify the theo-

retical results obtained in Section 4 and to determine the transient response of the digital loops to the

initial phase offset. Furthermore, computer simulation results for determining the minimum sampling

frequency for each approximation are also presented in Section 5. Section 6 presents the key conclu-

sions of the paper.

2. !$ystcm Modeling

‘fhe mathematical model for the typical uplink signal, from the ground station to the spacecraft tran-

sponder, S(fl, is defined as:

S(l) = .hl’sin (, (or+ o,,) /+ G)(t) + q) (1)

2nfC is the angular uplink  carrier frequency, (Od iswhere 1’ denotes the total received power, (O(;=  .

Doppler angular frequency offset, @(/) characterizes the phase modulation, and Q characterizes the

phase offset. The phase modulation employed by the typical space transponder is: O(O =- md(flsin(-

O)Scfl + nII{R(I),  where m is the uplinck  command data modulation index, d(t) denotes the uplink  Non-

Return-to-Zero (NRZ) data, O,$c = 27r~$~ is the uplink  angular subcarrier frequency, nl// is the ranging

modulation index, and R(O denotes the ranging signal,

Without loss of generality, one can set (oC = 27c}’)l;,  O)d =- 0, Q Z- 0, and expand Eqn (1) to get

S(/) = ,f2P[cos ((3(/)) sin (27tL;F/) + sin  (6)(/) ) cos (27tP)F/)  ] (2)

Ignoring the higher order harmonic component, it can be shown that the first term in Eqn (2) repre-

sents the uplink carrier component, and the second is the uplink  data component [16]. Presently, the



carrier component is tracked by an APLL. Illustrated in Figure 1 is a simplified block diagram of a

typical analog carrier tracking loop which is currently employed by the NASA’s standard space tran-

sponder. For typical NASA standard space transponder, the API-L depicted in Figure 1 is second

order loop with the following characteristics:

.- lb’ = IZmp Cioitf  = ?.4 xl 07 (3)
I = 1.6xl(i5scc

‘] ‘s )  =  i 1  +TRCS) ‘ ‘Rc (4)

I •t K,s
F’(s) = - - 7, = 4707 xc , 7, = 0.04’12  SW

I +?,  s’
(5)

1
1 .Ox 10-6 Scc (6)1’(.$)  =  -(1 ;“TJA~) ‘ ?v

K(s) = ; (7)

Note that B(S) is the typical Low-Pass Filter (LPF), /’”(S) is the loop filter, Y(S) is the roll-off filter of

the VCO, and A’(S) is the VCO integrator. I.et G(S) be the transfer function (excluding the ideal inte-

grator K(S)) of the analog loop defined as follow:

G(s) = /1(s)  }’(.$) l’”(s) (8)

Based on the APLL described in Figure 1, the equivalent digital counterparts are shown in Figures

2 and 3. Figure 2 shows the first configuration, the so called Configuration I, for the digital approxi-

mation of the analog loop. Configuration I is developed using direct transformation of each functional

block in the analog loop (i.e., B(S), 1“{S),  V(S) and K(S)) into the Z-domain. On the other hand, Con-

figuration 11 shown in Figure 3 is developed by transforming, the composite function G(S) and K(S)

into the Z-domain, respectively. Notice that the digital approximations of the APLL illustrated in Fig-

ures 2 and 3 have the sum-and-dump circuit to reduce the sample rate by a factor of M before digital

filtering. The sample rate is reduced to a rate such that the implementation of the digital filter is feasi-

ble using current digital signal processors. In the following section, the recursive implementations of

the LPF, VCO roll-off filter, loop filter, VCO integrator, and the transfer function G(S) will be

described,
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3. Recursive ll~l]}ler~~cl~tatiol]s  B(S), F(S), V(S), G(S) rind K(S)

To obtain the digital approximation of the analog carrier PI-L described in Figures 2 and 3 each

functional block in the analog loop (i e., B(S), 1~’(S),  V(S) and K(S)) can be mapped direct] y into the Z-

domain using  BT and the composite function G(.$) using llT or SIT, respectively. Notice that when

using the BT technique, one does not map the composite function G($) because of its mathematical

complexity associated with this technique. h40reover, when using the I IT and SIT techniques, ones

does not map each functional block in the analog loop because one wants to preserve the impulse and

and step responses of the loop, respectively, at the sampling points. Therefore, this section will deal

only with BT/JIT/SIT,  and that BT and IIT/SIT correspond to Configuration I and II, respectively.

3.1. Bilinear Transformation n4eth0d

With proper sampling frequency, this method preserves the phase characteristics in the narrow pass-

band when mappin$ the analog PLL into the dig,ital  domain. The mapping from analog  (S-domain)to

discrete domain (Z-domain) can be achieved by ciirect substitution of the following equation into the

analog transfer function [12- 14]

2 ( z - l )
.7 =--7:$(Z+I) (9)

where Ts denotes the sampling period, and Fs == l/Ts  denotes the sampling frequency. To obtain the

digital approximation of the analog filters using bilinear transformation, one substitutes Eqn (9) into

Eqns (4), (5), (6) and (7) to get B(Z), loop filter J’(Z), J’(Z) and K(Z). The results are,

(l+ Z-’)
B ( z )  =-- - - - -

(/100%-’ + .4,, )

(.4.7 - B(,)
I’(z) = - -

(.4 , z -“l;l)

7’S (Z+  1)
K(z) = ----

2 (z-i)

where

.400=  1 -(7.,,4,, =  l+ C’O,

.4(, = 1 +0(,, ..11 = l+/).$%=%-ll B, = b(, -l>o

(lo)

(11)

(12)

(13)

(14)
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and

(15)

Note that the Z-domain representation for V(S) is exact]  y the same as Eqn (1 O) except that Co Aoo and

Al I are replaced by, respectively

~~
co, = -7!; . 4 . ,  =  l - c o , ;  . 4 ,0  =  l+ CO,

s

The digital closed-loop transfer function, H(Z), for this case is given by

.

Ii(z) = -
AK}l(Z)f I”(Z) l’(Z)K (Z)

[l+..li ./l(z) (z)lz(z)K(z)]z)]

(16)

(17)

Using the typical values for NASA’s standard transponder, plots of the analog and digital closed-

Ioop phase and magnitude responses are shown in Figures 4a and 4b. These figures show that for san~-

pling  frequencies below 80 KHz, distortions in phase and magnitude can occur for the digital approxi-

mation loop. in addition, the figures show that for sampling frequencies greater than or equal to 80

KHz the response of the digital loop approaches that of the analog counterpart. Hence, to achieve the

same response as the analog loop, the minimum sampling frequency for this case is 80 KHz. Later on,

the minimum sampling frequency to achieve acceptable tracking performances will be investigated by

computer simulation. Figures 5a, 5b and 5C depict the recursive implementation of the loop filter

1“(Z), the integrator K(Z) and the LPF B(Z), respective] y.

3.2, impulse Invariant Transformation Method

This mapping technique preserves the impulse response at the sampling points. Let g(~ be the

impulse response of G(S), i e., g(l) == I.-’ [G(S)}, where I.-’f) denotes the inverse Laplace transform of

{.}, Thus, the digital approximation of the analog transfer function G(S) is given by [12-14]

CD(Z) = TSZ{g(I)l,  =,,T,)

where z{. } is the z-transform of {.}. Note that the analog transfer function G(S) considered in this

(18)
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paper is defined as in Eqn (8). Using Eqn (18), one can find the relationship between the S-variable

and Z-variable; it is given by [12-14]

(19)

To obtain the equivalent digital approximation for the integrator K(S), one substitutes Eqn (19) into
Eqn (7) to get

K(z) =  -“s
(z-1)

(20)

The digital ,approximation  for the analog transfer function G(S), (see Eqn (8)) is obtained by finding

the inverse l.aplace  transform of G(S) and then substituting the resultant into Eqn ( 18). Evaluating Eqn

(1 8), one has

where

IG,)(Z)  =  T$. ,
ao al a2

+ I,,’/ ~1+” c.7 i
:1-/”[’ 1-/”’(’ I- Z”’(, “’

71 –r2
a. = ~T,

‘~Rc) (~,-T,.)

7RC -72
~l=– -

(7RC-7,  ) . (T,{ C-T,..)

- T,K!, -
a2=-

(?2 -?,) (T,,. -  T,{r)

and
1 1 I

(l Z., b=-, c= -

?] TRc’ 71’

The digital closed-loop transfer function for this case is given by

(21)

(22)

(23)

(24)

(25)

(26)

From Eqn (26), the plots of the phase and magnitude responses can be obtained for the digital

approximation loop. Figures 6a and 6b illustrate the closed-loop phase and magnitude responses for

both analog and digital loops using typical parameters employed by NASA’s standard transponder.
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The figures show that the response of the digital loop approximated using impulse invariant transfor-

mation is the same as analog loop when the sampling frequency is higher than or equal to 80 KHz,

When sampling frequency is less than 80 KHz, the digital loop can encounter serious distortion in both

phase and amplitude responses. The recursive ii~~plell~elltatiol~s  GIJ(Z) and K(Z) using  impulse invari-

ant transformation are shown in Figures 7a and 7b, respectively.

3.3 Step Invariant Transformation Mcthocl

This method preserves the step response at the sampling points when mapping S-domain to Z-

domain. Similar to Section 3.2, the relationship between the analog and digital transfer function is

[12-14]

(27)

where z<) and G(S) are defined the same as above. Using Eqn(27),  one also can determine the relation-

ship bctwccn S and Z-variable. It is found to be [12-14],

s = (z-l)
7;7

(28)

Digital approximations K(Z) and GI)(Z) for K($) and G($) using step invariant transformation can be

obtained by using 13qns (27) and (28). The results are:

7.7
K ( z )  =

(z-l)

CD(Z) = ~o+p,
[;:;:::’71+’’”[l:::::b7:

po =:!+:+?
(1 c

where

P, =-;f>P2= -:->P3= -:

[

1 -z-’
+PJ’ “ .] -c7~

l-z e

(29)

(30)

(31)

(32) ,

The parameters cto, al, ct2, a, b, and c are defined in Eqns (22)-(25), respectively. Again, Eqn (26) can
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be used to evaluate the closed-loop transfer function for this case. Using typical values employed by

NASA’s standard transponder, plots of the closed-loop transfer fhnctions  for both analog and digital

loops are shown in Figures 8a and 8b. The figures show that the magnitude response approaches the

analog response when the sampling frequency is higher than or equal to 100 KHz. However, the phase

response suffers serious distortion when the sampling frequency is less than 1 MHz. Thus, in order to

achieve the same response as the analog loop, the digital approximation loop using step invariant

transformation must be sampled at least at 1 MHz, i e., this method requires 10 times higher sampling

frequency than the previous methods. Table 1 summarizes the results for the minimum sampling fre-

quency, Fs, that is required for the digital loop to achieve the same phase and amplitude responses

using typical parameters of the NASA’S standard transponder. The recursive implementations of

Glj(Z) and K@) using step invariant transformation are shown in Figures 9a and 9b.

Tal.dc 1: Minimum Sampling Frequcncy$ ]~j$, Required for the Digital Approximation to Achieve
the Same Phase and Amplitude Responses as APIL Using Typical Parameters for

NASA’s Standard Transponder
. .— .-..

- - - - - - - = - / = - - - - - ” -

-—
h4inimum l’;$Required  to Achieve

Transformation Method the Same Analog Phase and
Amplitude Responses, KHz

Bi]inear “80 ““

Impulse Invariant

-“::l_..._  . . .._ . . .._...I.I.

80

Step Invariant 1000

4. Carrier Tracking I’cwformanccs of (he Approximated Digital I.oops

Tlic tracking performance of the AP1.L for high loop Signal-to-lioise  Ratio (LSNR) is well-known

[1 5-16]. For LSNR >5 dR, the variance of the tracking phase error is approximated by

(33)

where NO is the one-sided thermal noise spectral density, Bl, denotes one-sided tracking loop noise

bandwidth, and I’c is the carrier power. Note that I..SNR = 5 dB is the loop threshold point where the

nonlinear theory and linear theory departs severely (by about 1 dB or more in terms of tracking vari-



ante). Themathematical  expressions fortheanalog  loop bandwidth isgivel~by[l5-l6]

l],, = -’- jm IH(J!)) ,2A)~~ -=, (34)

where Jl(jo) is the analog closed loop transfer function which is identical to Eqn (17) with Z replaced

bys =cjm.  Using the loop gain, the LPF, the loop filter, the roll-off filter of the VCO, and the VCO

integrator given in Eqns (3)-(7), respectively, the one-sided tracking loop noise bandwidth is calcu-

lated using Eqn (34) resulting in I?fJ = 62 Hz.

For the digital loops, the one-sided loop noise bandwidth B])], is given by

where j = Xl , and H(Z) is the closed loop digital transfer function which is given by 13qn (17) and

(26) for IIT and IIT/SIT respectively. The digital loop noise bandwidth for 11”1’  can be calculated by

substituting the digital transfer function GI1(Z), shown in Eqn (21), into Eqn (26) aiid then substituting

the resultant into Eqn (35). Similarly, for SIT, Eqn (28) is usecl instead of Eqn (21) for the digital

transfer function GD(Z).

In this paper, Eqn (35) will be evaluated numerically using an analytical computer program for three

transformation methods under investigation. The numerical results are plotted in Figure 10 using typ-

ical values for NASA’s standard transponder. Figure  10 shows a plot b’1,/l”,s  (or B~JTs) vs BDI~~S (or

B[jl,li) for 13T, IIT and S1’1’. This figure shows that, for BI,7:$ s 0.01, the tracking loop noise band-

width of the digital approximation of the analog loop using B-f is almost identical to the analog loop.

On the other hand, the digital loop noise bandwidth obtained by using  IIT/SIT  departs from the analog

loop bandwidth when BI,7s z 0.001. hlotice that SIT provides the worst digital approximation, and

13T is the best among the three transformations. Table 2 gives a brief summary of the numerical



,

results shown in Figure 10.

Table 2: Loop Noise Bandwidth of the Digital Approximations of the Analog PLL Using Typical
Values for NASA’s Standard Transponder When Fs = 6.2 KIIz and 62 KHz

Analog Loop Digital Loop Noise Digital Loop Noise
Transformation Method Noise Bandwidth, Bandwidth, BDI,, at Bandwidth, fi~ra,  at

I I ~L I F,y=- 6.2 KHz I ~s = 
62 KHz III _.— .— ..— ——— 4---

Bilinear 62 HZ 62 Hz 62 HZ  -
“-1L—–- . . . .—–-– .__.L._—––-.——--l --—-–—- --- -.-------/ ------ -——–—----l

impulse Invariant I 62 HZ I 76,88 Hz I 62 HZ I
k—~-- ----- ----———+———-–———+––-———-—––i

I Step Invariant I 62 ~]Z I 114.08Hz I 62 HZ I

~i~ure 10 shows that, for B1,7:$ <0.01  (corresponding to l“s <6.2 KHz), the digital tracking IOOP

bandwidth approximated by BT is the same as the analog loop. Moreover, the loop bandwidth of the

digital loops approximated by IIT and SIT are worst than that of the analog counterpart for BI,lS >

0.001 (corresponding to ):$= 62 KHz). This implies that in order to achieve the same tracking phase

error as the analog loop, the digital loop approximated by the BT requires lower sampling frequency

than IIT and S]”r. For the analog loop with characteristics specified in Section 2, it is found that the

minimum sampling frequency (for the digital loop) that is required to have the same tracking loop

bandwidth as the analog is 6.2 KHz, and this is only achievable through ET. It has been shown in

Section 3, Table 1, that the minimum sampling frequency required to achieve the same phase  and

amplitucie  responses as the analog is 80 KHz for both F3T and 11-1’, and 1 MIIz for SIT. Hence, what

will be the minimum sampling frequency that one would select for optimum performance ? The

answer to. this question will be deferred until Section 5.

It should be mentioned that Eqn (35) can also be evaluated analytically by expressing 11(Z, in the

following form

bozq+ b,zl +qz~-1 b3zl +bi
II(z) = --- ;

(JOZ’L?,  Z3 + (?, Z- + (@’ + (/4

and then from Table III in [17], Eqn (35) becomes

(36)

1 (IOBOQO  - 6@,Q, + @@2 - f@3Q3 + ~4Q4
BDr. =

(37)
27#(1) (1(, { ((l: -O:) QO- (0(,0, -(i104)Q,  +  (aoa.  -f1204)Q2- (flof13-a,  ff4)Q3}.



where

Bo=b:+b:+b:+b:+b:; ~, = ~(bibl +. b, b2+b2b3+b3b4)

}]2 =  2( bob2+b1b3+b2b4);  J~3 =  2( bob3+b,  b4);  B4  =  ~bobd

Q, = aoe, e4 - aoa3e2 +- a4 (a, t2 - e3c4) ; Q, = ~00,c4 - f7002a3 + n4 (0,02 - a3e4)

Q2 = ~o~1e2- ~O~2C1+ ~~I~zc3-flJezJi ~3= ‘,(a)e~-ejcq)  ‘a2(ale}-a3e3)  ‘n3(e]e4-n3e2)

2 ‘J + (e:- ~i) [o, (~, -~J3) + (~o-~4)  (~q-~~z)lQ 4  =  ao[c2(a1a4 -aoa3)+e5(~~-~4)_  .

el =  ao+a2; e2  =  o,+nj; e3=a2 +04

e4
=  flo+-a4;  e5 ~Jo + ~2 +. * 4

As an example, for 13T, one gets

~o =  2);#,w4,, +.4K.40; 0, =  2)~s(A,v  ~w ,4 4 +-,4(,,.4 ,1,.1, -.4,..4,,11,  -A,,.4,  U41) +AK(3.40- Bo )

~z =  2F#, (.400’40, -’40,.4,, ) + ~1~.$JJ, L4,0’4,, -’4,*’~oo-~lo,A,,)  +3’4~%-%)

*3 = 21;:/, (/l(MA,o  - Ao,.4m + A0,.4 , ,) -~~’:<~ ,.”f,,,.’f,,(, +  .-IK (.4 0 – w(,) ; 04 = 2}’’./3 .4 A31,000 -,4 m.

b. = AK.40; b, = AK(3,40-BO); b. = 3.4 K(,,I(, - 3BO)

f)3 = ,4K (,A IO - 3];.); b4 = -.4KBo

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

Having determined the corresponding digital loop noise bandwidth, one can evaluate the variance of

the tracking phase error for the digital approximations of the analog loop using the following formula,

from Eqn (33)

Al~j[)L?
(50)%= -1 ,

c



,

where N is the total one-sided noise spectral density. When the uplink  command data and ranging

modulation are turned off, i.e., m = nlR == O, all power will be allocated to the carrier and there is no

interference from the command data and ranging to the carrier tracking loop, and hence N = No. As the

command data modulation (or ranging) is turned on, there exists some interferences between the car-

rier and the command data (or ranging). Since the ranging tones will be placed farther away from the

carrier and the power allocated to the ranging is always smaller than the uplink  command data, hence

the effects of the ranging to the carrier tracking is negligible and will not be considered here. How-

ever, the interference effects of the uplink  command data to the carrier tracking may not be neglected

because of the increase in the uplink command data rate. Recently, the international Consultative

Committee for Space Data Systems (CCSDS) has considered to increase the maximum uplink  data

rate from 2 Kbps to 4 Kbps and the possibility of using 32 KHz subcarrier frequency for both 2 Kbps

and 4 Kbps.

To determine the effect of interference of the uplink ciata  on the carrier tracking loop, a model of the

uplink  data must be provided. Ilere  it is assumed that the uplink  data symbols are equally likely to be

+- I ‘S and -] ‘S and that successive symbol are uncorrelated.  This assumption leads to the Power Spec-

tral Density (PSD) of a unit power sinusoidal wave subcarrier phase-reversal-keyed by the uplink

command data stream (see Eqn (1)) is given by [18]

SC,)(L  7’,j”c,  =  ; 7(,7/) ,s(J-,,j-,c)  +  8(J+ /,(,c)]  -1 ; J; (~~1) [.$[,  (/-- v-,,.)  + .$D (t+ V-qc) 1
11

(51)
I! = l,n e)v)l k- I.k odd

where

where T is the command symbol period. Note that the PSD shown above is evaluated at the carrier

frequency. Hence, when the command is on the total noise spectral density, N, seen by the carrier

tracking loop can be evaluated using the following relationship

(53)
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where Pc is defined as (from Eqn (1) and [16-18])

Pc = P (J(, (/,/))~ (54)

and ,1~.) is the zero order Bessel Function. Using typical values for the NASA’s standard transponder,

Figure 11 shows the theoretical results obtained for the variance of the carrier tracking phase jitter,

Od)2,  as a function of the received Signal-to-Noise spectral density Ratio (SNR), ))AV@ for both analog

and digital loops when the command is on. The results were plotted for the modulation index m == 70

degree, uplink  subcarrier  frequency~SC  == 32 KHz, uplink  comlmand data rate RS = 2 Kbps, and san~-

pling  frequency F,s = 1 MHz. As expected, for high sampling frequency the tracking jitter of the digi-

tal loop using 13 T/I IT/SIT approaches that of the analog loop. Figure 12 presents the numerical results

for the digital loop using BT with both up]ink command modulation-on anti off. The theoretical

results shown in this figure will be verified by computer simulations in Section 5. Note that the rela-

tionship between the total received SNR, l)AVO, and the carrier tracking loop signal-to-thermal noise

spectral density ratio, I’C/NO can be evaluated from lZqn (54), and the results are plotted in Figure 13.

S. Computer Simulation Rc.suits

The digital PLL’s shown in F’igures  2 and 3 have been implemented using the Signal Processing

Workstation (SPW) of Conldisco, Inc. Simulations have been run to verify the carrier tracking jitter

obtained in Section 4 and to determine the time responses of the digital loops due to the phase offset

between the incoming and the NCO reference phase. The update rate of the loop has been set to be the

same as the sampling rate. This is done in the simulation by setting the parameter M = 1 (see Figures

2 and 3). In addition, the simulations have been performed to determine the minimum achievable

sampling frequency for each digital approximation.

S.1, Measurcme,nts  of the Tracking Jitter  and Time Response of the Digital I.oops

Using typical parameters employed by the NASA’s standard transponder, computer simulationsfor

the digital loops approximated by 13T (see Figure 2) and IIT/SIT (see Figure 3) have been run for both

uplink  command modulation-on (with modulation index set at 70 degree, uplink  command data rate of

2 Ksps and subcarrier frequency of 32 KHz) and uplink command modulation-off at lMHz sampling

frequency. The simulations were run for 2.5 million iterations, and the variance of the carrier phase

jitter were measured for four different noise seeds and the average is presented in Table 3. For the
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sake of comparison, the results are also plotted in Figure  12. On the other hand, Figure 14 shows the

simulation results of the digital loops approximated by IIT and SIT at 1 MHz sampling frequency.

The simulation results, for, all cases at 1 h4Hz sampling frequency, are in good agreement with the

theoretical results.

Table 3: Sin~ulation Results for Con~nland-On With m = 70 Degree,.~~c = 32 KHz, Rs = 2 Ksps,
and Conln~and-Off  at 1 MIIz  Sampling Frequency

[– ,

.——.. -. _—— _
P V a r i a n c e  o f The Carrier Phase Jitter, rad2

—

I NO II Command -

-;~~

30 0.064000

35 0.019670
.— .—..  —

40 0.006165

45 0.001945
_——

50 0.000613

55 “- 0.000194

60 6.145 x10-S

65 1.955 X10-5

IIT
——-—

0.062250

0.019175

0,006013 ‘-

0.001895

0.000598

0.000189

5.973 X10-5

o f f Command -

I .818X10-5
..— —

===!+=-=”-==’’===-l  -------——==’=’

0.063800 II 0.151000 1’ 0.150750
------  4+-———---–+—

0.019400 II 0.045100 I 0.044725
–--–—-- -- M – ----–—--—---4

0.006040 II 0.014000 I 0.013875
---–-–-  ----41 — -------- ------1- ---- ------

0.001900 II 0.004398 I 0.004360
---- -–--HI-–-----–- -— --+ --  - - - - -–- -”–” “ -” --

0.000598 II 0.001390 I 0.001377
~~ -- -+1-- - ----––- ---+ ---------— --------

0.000189 II 0.000441 I 0.000435

‘----””-11  ‘--5.960 x10-5 ““ 0.000139 ‘“”1- 0.000140

1 .890X I o-j”“ ’ ”-- 1 1--------- “ --- l“” ‘“”-” ” ” ”-” - - - -” - - -4.66x-10 -5”’-” 4.623 x10-5

on

SIT
—.. -—

0.150250

0.045250

0.013875

0.004355

0.00137 s-”

0.000445
-

0.000140

4,623 x10-5

Computer simulation has been performed to determine the time responses of the digital approxin~a-

tions of the analog loops using, the three transformation techniques described in Section 3. A phase

offset of K/9 radian between the incoming phase of the signal and the reference NCO has been

injected into the loop with 1 Mllz  sampling rate, and the settling time, IS, of each loop to the phase off-

set was measured. Here, the settling time is defined as the time it takes the loop to catchup with the

phase offset, or the time it takes the loop to stabilize in the presence of the phase offset. The results

using typical parameters of NASA’s standard transponder are summarized in Table 4 for command

modulation-off and noise free case.



Table 4: Settling Time, ts, for the phase offset of n/9 radians
f

Transformation Method Settling Time, ts, sec
. . . . . —.

Bilinear 0.12

impulse Invariant 0.14
——-—

Step Invariant 0.15 ‘–
-.— .. —.__  —.. ——. .-. ———  —

5.2. Minimum Achievable Sampling Frequency

As shown in Figure 10 and Table 2, for the analog PLL’s characteristics specified in Section 2, the

minimum sampling frequencies required for the digital loop to achieve the same analog tracking loop

bandwidth are 6.2 KHz and 62 KHz for 13T and for IIT/SIT, respectively. On the other hand, it has

been shown in Section 3 that the minimum sampling frequencies required for the digital loop to have

the same closed-loop phase and amp!itude  responses are 80 KIIz and 1 MHz for BT/HT and SIT,

respectively. Based on these results, one is tempted to select the smallest sampling frequency so that

the requirements on the speed of the digital signal processor and hence power consumption can be

minimized, However, the selected, sampling frequencies (based on these criteria) may not be able to

provide the required tracking performance. Computer simulation will be used as an additional tool to

assist in the making of final decision on the minimum achievable sampling frequency. Here, the n~in-

i mum achievable sampling frequency, denote as PSI]), is defined as the frequency that satisfies the

tracking performance requirement. Table 5 summarizes the simulation results for 200 KHz carrier fre-

quency, 32 KHz subcarrier frequency, data rate of 2 Ksps, modulation index of 70 degree, Pi!. of 35

dB-Hz and typical loop parameters employed by the NASA’s standard transponder



Table  S: Tracking Phase Jitter as a Function of Sampling Frequency for NASA’s Standard
Transponder

.1— Fs, KHz I 0;, , I-rld2 I
~.-—----  -——————————4
I BT I IIT I SIT I

— -1-=~==1-16.5 —  0 . 0 7 2 5

—.71000 – ‘1 —— —-. —._-. —._
‘“--1

-—— .—— —
0.0451 0.0447 0.0453 1

l_–—_... . . . . ..__–L .–_ . . . . . . . . . . . . ..—..—l..-—.~

The phase jitters shown in Table 5 are then compared with the analog phase jitter of 0.045 rad2 for

this particular case (see Eqn (50) with l~DI, replaced by BI, = 621 Iz). It is observed that the variance

of the tracking phase error, ~~,, of the digital loop approximated by BT is as good as the analog loop

when the sampling frequency is about 24.8 KHz. Moreover, the tracking phase errors of the digital

loops approximated by IIT and SIT are close to the analog loop when the sampling frequencies are

240 KHz and 1000 KHz, respectively. The results for the minin~um  achievable sampling frequency

(or optimum sampling frequency) for the three transformations shown in Table 5 are then compared to

the results obtained in Sections 3 and 4. Recall that Section 3 determines the minimum sampling fre-

quency, denoted as Fslllr, that is required for the digital loops to achieve the same amplitude and phase

responses as the analog loop, and Section 3 calculates the minimum sampling frequency, denote as

Fsl,lL,, for the digital loops to have the same tracking loop bandwidth as the analog loop. For typical

NASA’s standard transponder, Table 6 summarizes the final results regarding the optimum sampling

frequency that is required for each digital approximation method. Table 6 shows that the minimum

achievable sampling frequency for both ET and IIT is about four times Fsnll) and, for SIT, the n~ini-
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mum achievable sampling frequency IS the same as Fslllr.

Table 6: Minimum Achievable Sampling Frequency for a Typical NASA’s Standard
Transponderr---‘-—

h4inimum Sampliag h4ininltlnl  %mpling

Transformation Frequency Required to Frcqtwcy  Requirtd to
Minimum Achievable

Achieve [hc Same Phase/
Mmplit]g  Frequency for

Method
Achieve the Same Remarks

Ampliltide  Responses, A!~alogImop13a!1  d\\,icil11,
a Sptcilicd  I“racking

~sl)u, KH7. ~smll,  K}b.
Jitler, l: S,ll, K}IZ

.._ —.... —. ————. —

BT 80 6.20 ‘ - - 24.8 ‘Snl = 4FSn~b—..
IIT 80 62,0 240 ‘- Fsnl = 3 .9FSnlb

——...——— .———..
~T 1000 62.0 1000 ‘Sm = ‘ S m r.—————. —.—— .— —.——— . . . . .

6. Conclusion

Digital approximations of the analog carrier tracking loop for advanced digital transponder applica-

tions have been investigated in detail. Using Typical values of the loop parameters employed by the

NASA’s standard transponder, the performance of each approximation was determined for the closed

loop phase and magnitude responses, carrier tracking jitter, response of the loop to the phase offset and

minimum achievable sampling frequency. ‘l%e numerical results show that Bq’ appears to give the

best performance at low sampling rate as compared to the other transformations. The best perfor-

mance at low sampling frequency is evident from the closed loop phase and magnitude responses

curves, carrier tracking loop bandwicl~hs  curves and tile computer simulation results for the tracking

phase error. IIowever,  at high samplins  frequency (higher than or equal to 1 MIIz, for the case con-

sidered in this paper), the performance of the DPL1. approximated by all three transformations

approaches that of the analog loop. It was found that in order to achieve the same tracking phase error

as the analog loop, the minimum sampling frequencies required for BT/HT and SIT are about 4FS111b

and Fsnlr, respectively. Here, Fsnll, and Fsnlr denote the minimum sampling frequencies for the digital

loops to have the same tracking loop bandwidth and phasehnagnitude responses as the analog loop,

respectively. In addition, using typical loop parameters for NASA’s standard transponder, the simula-

tion results show that the response to the incoming phase offset of 7c/9 radians of the digital loop

approximated by the BT is faster than the loops approximated by IIT and SIT by about 20 and 30

msec, respectively

As pointed out in [9], in the absence of noise, the digital loop approximated by the IIT method
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exhibits less overshoot and ringing in the output response than the others. However, this may not be

the key criteria in the selection of the optimum transformation method for approximating the analog

loop. This paper has shown that, for applications require low sampling frequency, the BT method

appears to give the best performance in terms of the tracking phase error and response to the initial

phase offset, Therefore,when the key requirements, such as low sampling rate, tracking phase error

and fast response to the initial phase offset, for approximating the analog loop are desired then the BT

method is recommended. Furthermore, the performance evaluation approach presented in this paper

can easily be extended to any analog PLL to ( 1 ) find the minimum achievable sampling frequency,

and (2) determine the tracking phase error of the digital approximation of the analog loop.
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Figure 1. Simplified Block Diagram of the Analog PLL
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Figure 4. Closed-loop Response of the Digital Approximation
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Figure 5. Recursive Implementation of the Loop Filter, Lowpass and
Filter and Integrator Using Bilinear Transformation
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Figure 6. Closed-loop Response of the Digital Approximation
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Figure 7a. Recursive Implementation of the Open Loop Transfer Function
GD(Z) Using Impulse Invariant Transformation Method

~ . . ..* . . . . ..#` . . . . . . ..*.**..# . . . . . . . . ..# . . ..## . . . ..#...# . . . ..* . . . . . . ..8 . . ..#* . . . . ..*...#.#.

‘np”t*$4444d#%dt$#t($~t4$$$t4t#$4#44/$d4d$ GD(Z)d#

+
q)

b--MwlJ
+

1 J 1 I
+

(29
I

‘k
I {

**,,x,,,x,,**,**,.,cc,,.*,,,,,*,,#,.#..#c*...**.,,,*.,Kc...c...*c*.**.c*.*r0H**Hc****ccc.8.*...

Figure 7b. Recursive Implementation of the Integrator K(Z)
I Using Impulse Invariant Transformation Method

- output

Y&l I$ 1
$

iz-’ ~
$ j
>,,,,,,J,,/,>,.,>>-.,>...,.....,....,,..,,,.,,.,,,..,..,,,,.,.,.,,,,,,,,,,,,,,,..,,.,,./,.,.,..#



,

Figure 8. Closed-loop Response of the Digital Approximation
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Figure 9a. Recursive Implementation of the Open Loop Transfer Function
GD(Z) Using Step Invariant Transformation Method
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Figure 11. Theoretical Comparison of Tracking Jitter for Command-On
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